ACP
Packages :
from sklearn.decomposition import PCA
from matplotlib import pyplot as pl
import numpy as np
import pandas as pd
normalizeData = StandardScaler().fit_transform(data) #normaliser les données
pca = PCA(n_components=3)
projection = pca.fit_transform(tst)
acp = pd.DataFrame( projection )
varaince_exp = np.round( pca.explained_variance_ratio_/sum(pca.explained_variance_ratio_)*100, 0)
acp.columns = [ 'axe' + str(i) + '(' + str(j) + ')' for i, j in zip(acp.columns.values, varaince_exp)]
acp.index = data.index
sns.scatterplot( x = acp.iloc[:, 0], y = acp.iloc[:, 1])
Description de la ACP
pca.explained_variance_ratio_
pourcentage de la variance représentée.